<<12345>>
16.

 The integral  $\int_{}^{} (1+x-\frac{1}{x})e^{x+\frac{1}{x}}dx$  id equal to 


A) $(x-1)e^{x+1/x}+C$

B) $xe^{x+1/x}+C$

C) $(x+1)e^{x+1/x}+C$

D) $-xe^{x+1/x}+C$



17.

If x=-1 and x=2  are extreme points of   $f(x)=\alpha\log|x|+\beta x^{2}+x$ , then


A) $\alpha=-6,\beta=\frac{1}{2}$

B) $\alpha=-6,\beta=-\frac{1}{2}$

C) $\alpha=2,\beta=-\frac{1}{2}$

D) $\alpha=2,\beta=\frac{1}{2}$



18.

 If f and g are differentiable functions in (0,1)  satisfying f(0)=2=g(1), g(0)=0  and f(1)=6 , then for some c ε ]0,1[


A) $2f'(c)=g'(c)$

B) $2f'(c)=3g'(c)$

C) $f'(c)=g'(c)$

D) $f'(c)=2g'(c)$



19.

 If g is the inverse of  a function f and   $f'(x)=\frac{1}{1+x^{5}}$  , then g'(x) is equal to


A) $1+x^{5}$

B) $5x^{4}$

C) $\frac{1}{1+\left\{g(x)\right\}^{5}}$

D) $1+{g(x)}^{5}$



20.

$\lim_{x \rightarrow 0}\frac{\sin(\pi\cos^{2}x)}{x^{2}}$   is equal to 


A) $\frac{\pi}{2}$

B) 1

C) $\pi$

D) -$\pi$



<<12345>>